Decrease of Mosquito Salivary Gland Proteins after a Blood Meal: An Implication for Pathogenesis of Mosquito Bite Allergy

Padet Siriyasatien MD, PhD*, Kuntida Tangthongchaiwiriya MSc*
Kanyarat Kraivichian MD*, Surang Nuchprayoon MD, PhD*
Apiwat Tawatsin MAppl Sc**, Usavadee Thavara PhD**

* Department of Parasitology, Faculty of Medicine, Chulalongkorn University
** National Institute of Health, Department of Medical Sciences, Nonthaburi

Salivary gland protein profiles of Aedes aegypti (L.) and Culex quinquefasciatus (Say) pre- and post-blood feeding were analyzed. SDS-PAGE studies before blood feeding of Ae. aegypti demonstrated 8 major polypeptide bands of 20, 35, 37, 42, 45, 47, 70 kDa and a high molecular weight band >118 kDa, whereas those of Cx. quinquefasciatus demonstrated 9 major polypeptide bands of 20, 26, 36, 38, 45, 47, 49 kDa and 2 high molecular weight bands >118 kDa. After a blood feeding, salivary gland polypeptides of Ae. aegypti at 35, 37, 45, 47, 70 kDa and high molecular weight band >118 kDa were depleted, while the polypeptide bands of 20, 26, 36, 38 kDa were depleted in Cx. quinquefasciatus. The presented study suggests that these major polypeptides were introduced into vertebrate hosts when a mosquito took a blood meal. Further investigation in molecular, biochemical and immunological aspects of these salivary gland polypeptides may provide information for better understanding in the role of these proteins in mosquito bite allergy.

Keywords: Mosquito bite allergy, Aedes aegypti, Culex quinquefasciatus, Mosquito salivary gland protein

Full text. e-Journal: http://www.medassocthai.org/journal

Dermal allergy to mosquito bites is a common problem worldwide. Although in most cases of mosquito bites elicit mild symptoms such as cutaneous reactions, systemic reactions including generalized urticaria and angioedema, rhinitis, conjunctivitis, asthma have been documented(1-3). Anaphylactic shock following mosquito bites also has been reported(4). These reactions are caused by proteins in the mosquito saliva and involved in IgE, IgG1 and IgG4 responses and lymphocyte proliferation(5,6).

Mosquito saliva contains α-glucosidases and α-amylases that initiate the digestion of carbohydrates present in dietary carbohydrate sources and other enzymes and peptides involved in blood feeding and ingestion such as anticoagulants, vasodilators, and platelet aggregation inhibitors(7,8). The saliva also contains molecules that provoke a humoral and cellular immune response in the vertebrate host(9-11). Although salivary glands of several mosquito species have been investigated(7,12-20), changes of salivary gland protein post blood feeding using SDS-PAGE was demonstrated only in Armigeres (Ar.) subalbatus (Coquillett) mosquito(20).

In Thailand, Aedes (Ae.) aegypti (L.) and Culex (Cx.) quinquefasciatus (Say) mosquitoes are the most important mosquito species distributed throughout the country. Ae. aegypti is the most important endophagic, daylight-bite mosquito and plays a major role of dengue virus transmission. Cx. quinquefasciatus is exophagic, night-bite mosquito found mainly in urbanized areas. Mosquito bite allergy is a common problem found in clinical practice especially in children. Despite this, only a few reports in which modern laboratory techniques have been applied to the study of mosquito allergy in Thailand21. In the present study the authors would like to determine the major polypeptides which were related to blood feeding of Ae. aegypti and Cx. quinquefasciatus by SDS-PAGE. This would provide crucial information for further investigation in mosquito bite allergy.
Material and Method

Mosquito rearing

Ae. aegypti and Cx. quinquefasciatus mosquitoes were raised in an insectary at the Experimental Animal Unit, Faculty of Medicine, Chulalongkorn University. Briefly, after the emergence as adults, the mosquitoes were reared in insectariums at 28°C ± 1°C, 80% ± 5% relative humidity under 12/12 hours light/dark photo-period. Adults were supplied with a damp cotton wool pad which contained 10% sucrose solution as a carbohydrate source until used.

Mosquito blood feeding

Female mosquitoes were allowed to feed on anaesthetized mice for 30 minutes. Groups of mosquitoes were reared simultaneously from the same cohort of eggs. Adult mosquitoes aged 4 to 5 days after emergence were used.

Mosquito salivary gland extraction

Mosquito salivary gland extracts were prepared from 5 days old female mosquitoes. Mosquitoes were anaesthetized on ice and salivary gland dissection was performed as in the method described by Suwan et al. (2002). Mosquito salivary glands were then transferred to a microcentrifuge tube containing a small volume of PBS (phosphate buffer saline solution) and kept at -70°C until used.

SDS-PAGE Analysis

SDS-PAGE was performed according to Laemmli (1970) and the proteins were stained using a Coomassie Brilliant Blue (PhastGel Blue R) according to the manufacturer's instruction. Twenty pairs of mosquito salivary glands were used for each sample, and each experiment was repeated three times.

Results

Morphology of mosquito salivary glands

The salivary glands of female Ae. aegypti and Cx. quinquefasciatus are paired organs, located in the thorax. The gland is composed of two identical lateral lobes and a shorter and wider median lobe. The lateral lobes could be further divided into two regions, proximal and distal. Salivary glands of these two mosquito species are indistinguishable morphologically (data not shown).

SDS-PAGE Analysis

SDS-PAGE analysis of salivary gland proteins of female Ae. aegypti mosquito pre-blood feeding demonstrated 8 major polypeptide bands of 20, 35, 37, 42, 45, 47, 70 kDa and a high molecular weight band >118 kDa. After a blood meal, the depletion of major peptide bands of 35, 37, 45, 47, 70 kDa and high molecular weight band >118 kDa was observed (Fig. 1).

Study in Cx. quinquefasciatus found 9 major polypeptide bands of 20, 25, 36, 38, 45, 47, 49 kDa and 2 high molecular weight bands >118 kDa, the polypeptide bands of 20, 26, 36 and 38 kDa were depleted after a blood feeding (Fig. 2).

Discussion

Morphology of Ae. aegypti and Cx. quinquefasciatus from the present study is similar to the pattern described for Ae. aegypti, Ae. albopictus (Skuse), Ae. togoi (Theobald), Cx. pipiens (L.), Ae. caspius (Pallas), and Ar. subalbatus. The female gland is composed of two identical lateral lobes and a shorter and wider median lobe. The lateral lobes could be further divided into two regions, proximal and distal.

The salivary gland protein profile of Ae. aegypti and Cx. quinquefasciatus mosquito showed a

![Fig. 1](image-url)

Protein electrophoretic profile of salivary glands of *Aedes aegypti* mosquitoes. Proteins were separated on a 12% SDS-PAGE gel and Commassie Brilliant Blue stained. Lane 1, twenty pairs of salivary glands of female mosquitoes at day 5 after emergence (sugar feeding); Lane 2, twenty pairs of salivary glands of female mosquitoes dissected immediately after a blood meal; M: Molecular weights markers of sizes (kDa) indicated on the left side of the picture.
Protein electrophoretic profile of salivary glands of *Culex quinquefasciatus* mosquitoes. Proteins were separated on a 12% SDS-PAGE gel and Commae Brilliant Blue stained. Lane 1, twenty pairs of salivary glands of female mosquitoes at day 5 after emergence (sugar feeding); Lane 2, twenty pairs of salivary glands of female mosquitoes dissected immediately after a blood meal; Molecular weights markers of sizes (kDa) indicated on the left side of the picture.

Different pattern. The different protein profiles are found not only in different species but also in the same mosquito species. Study by Moreira et al. demonstrated that *Anopheles darlingi* (Root) mosquito collected from different geographical regions of Brazil showed some differences in pattern of salivary gland protein profile. In the present study the authors demonstrated the salivary gland protein profile of *Aedes aegypti* and *Culex quinquefasciatus* which originally were collected from Bangkok and maintained at the insectary of the National Institute of Health, Department of Medical Sciences, Nonthaburi, Thailand.

Decreasing of major peptide bands of 35, 37, 45, 47, 70 kDa and a high molecular weight band >118 kDa in *Ae. aegypti* and 20, 26, 36 and 38 kDa in *Cx. quinquefasciatus* indicate that these polypeptide proteins were released to vertebrate hosts while female mosquitoes took a blood meal. Therefore, these salivary gland proteins may cause mosquito bite allergy in human. Hudson et al. (1960) demonstrated that mosquito saliva was a source of antigens which produced typical bite reaction in man and Peng et al. (1996) showed that recombinant 37 kDa protein in *Ae. aegypti* was shared by all five *Aedes* species and also *Cx. quinquefasciatus* mosquito. In the present study the authors also found the 37 kDa salivary gland protein in *Aedes aegypti* mosquito and this protein was depleted after blood feeding.

Nascimento et al. (2000) and Malafronte et al. (2003) demonstrated that salivary gland proteins of *Cx. quinquefasciatus* mosquito had 2 major polypeptide bands of 28.3 and 35.7 kDa, which induced immune response in mice. In the present study the authors also showed 36 kDa polypeptide band that related to blood feeding. But were unable to demonstrate depletion of the 28.3 kDa polypeptide protein in the present study.

At present, laboratory diagnosis of mosquito bite allergy using the commercial mosquito extracts prepared from whole mosquitoes are not standardized for diagnosis of mosquito allergy. In order to improve the precision of diagnosis of mosquito allergy, purified mosquito saliva should be developed. The present study provides data of salivary gland proteins, which related to blood feeding. Therefore, these proteins may be related to mosquito bite allergy. Further study of these purified or recombinant salivary gland proteins would help physicians to diagnose mosquito bite allergy more accurately.

Acknowledgements

The authors wish to thank all the staff of the Department of Parasitology, Faculty of Medicine, Chulalongkorn University. This work was supported by the Molecular Biology Project, Faculty of Medicine, Chulalongkorn University.

References

6. Peng Z, Simons FER. Mosquito Allergy: Immune
mechanisms and recombinant salivary allergens. Int Arch Allergy Immunol 2004; 133: 198-209.

การทดลองของโปรตีนในตัวม้าลายยุงลายบาง: พยายามก้าวหน้าของการแพทย์ภัย

แต่ถ้า สิริม vérดีร, ภูตินาค ตั้งอิทธิกรรม ภูทินาค ภูตินาค, สุรัส สุรัส ภูทินาค, ภูทินาค ภูทินาค, ภูทินาค ภูทินาค

การวิเคราะห์โปรตีนในตัวม้าลายยุงลายบาง (Aedes aegypti) และ ยุงกายุ (Culex quinquefasciatus) โดยวิธี SDS-PAGE ทั้งก่อนและหลังให้ยุงดื้อกินเสียด ส่วนโปรตีนหนักในตัวม้าลายยุงลายบางมีอยู่ 8 ชนิด ได้แก่ โปรตีนขนาด 20, 35, 37, 42, 45, 47, 70 kDa และโปรตีนที่มีน้ำหนักไม่แตกต่างมากกว่า 118 kDa ขึ้น 1 แบบ สำหรับโปรตีนในตัวม้าลายยุงลายบางมีอยู่ 9 ชนิด ได้แก่ โปรตีนขนาด 20, 26, 36, 38, 45, 47, 49 kDa และโปรตีนที่มีน้ำหนักไม่แตกต่างมากกว่า 118 kDa ขึ้น 2 แบบ โปรตีนในตัวม้าลายยุงลายบาง 2 ชนิดมีการเปลี่ยนแปลงทางหนักยุงดื้อกินเสียด โดยพบว่าโปรตีนในตัวม้าลายยุงลายขนาด 35, 37, 45, 47, 70 kDa และโปรตีนที่มีน้ำหนักไม่แตกต่างมากกว่า 118 kDa ของยุงลายยุงลายบางปรับกันลดลง และโปรตีนในตัวม้าลายขนาด 20, 26, 36 และ 38 kDa ของยุงลายยุงลายบางปรับกันลดลง ผลการศึกษาแสดงให้เห็นว่ามีโปรตีนในตัวม้าลายยุงลายบางถูกกล่าวถึงโดยที่สิทธิสมบัติทางอนุจริตภาพ ซึ่งรวมถึงและกิจกรรมกันวิทยาของโปรตีนเหล่านี้ และจะช่วยทำให้เกิดความเข้าใจทบทวนของโปรตีนเหล่านี้ในพยายามก้าวหน้าของการแพทย์ภัยภัยมากยิ่งขึ้น

J Med Assoc Thai Vol. 88 Suppl.4 2005 S259